Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection

نویسندگان

  • Jiwen Fan
  • Daniel Rosenfeld
  • Yanni Ding
  • L. Ruby Leung
  • Zhanqing Li
چکیده

[1] Aerosol indirect effects, i.e., the interactions of aerosols with clouds by serving as cloud condensation nuclei or ice nuclei constitute the largest uncertainty in climate forcing and projection. Previous IPCC reported negative aerosol indirect forcing, which does not account for aerosolconvective cloud interactions because the complex processes involved are poorly understood and represented in climate models. Here we elucidated how aerosols change convective intensity, diabatic heating, and regional circulation under different environmental conditions. We found that aerosol indirect effect on deep convective cloud systems could lead to enhanced regional convergence and a strong top-of-atmosphere warming. Aerosol invigoration effect occurs mainly in warmed-based convection with weak shear. This could result in a strong radiative warming in the atmosphere (up to +5.6 W m ), a lofted latent heating, and a reduced diurnal temperature difference, all of which could potentially impact regional circulation and modify weather systems. The positive aerosol radiative forcing on deep clouds could offset the negative aerosol radiative forcing on low clouds to an unknown extent. Citation: Fan, J., D. Rosenfeld, Y. Ding, L. R. Leung, and Z. Li (2012), Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection, Geophys. Res. Lett., 39, L09806, doi:10.1029/ 2012GL051851.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intensification of Pacific storm track linked to Asian pollution.

Indirect radiative forcing of atmospheric aerosols by modification of cloud processes poses the largest uncertainty in climate prediction. We show here a trend of increasing deep convective clouds over the Pacific Ocean in winter from long-term satellite cloud measurements (1984-2005). Simulations with a cloud-resolving weather research and forecast model reveal that the increased deep convecti...

متن کامل

Effects of Aerosols on Radiative Forcing and Climate Over East Asia With Different SO2 Emissions

It is known that aerosol and precursor gas emissions over East Asia may be underestimated by 50% due to the absence of data on regional rural and township industries. As the most important element of anthropogenic emissions, sulphur dioxide (SO2) can form sulfate aerosols through several chemical processes, thus affecting the regional and global climate. In this study, we use the Community Atmo...

متن کامل

Influence of aerosol-radiative forcings on the diurnal and seasonal cycles of rainfall over West Africa and Eastern Atlantic Ocean using GCM simulations

Effects of aerosol radiative forcing on the diurnal and seasonal cycles of precipitation over West Africa and eastern Atlantic Ocean are investigated for the boreal summer season: June–July–August. An eight year (2000–2007) average of GCM simulated rainfall data is compared with the corresponding TRMM rainfall data. The comparison shows that the amplitude of the diurnal cycles of rainfall over ...

متن کامل

Modeling the influences of aerosols on pre-monsoon circulation and rainfall over Southeast Asia

We conduct several sets of simulations with a version of NASA’s Goddard Earth Observing System, version 5, (GEOS-5) Atmospheric Global Climate Model (AGCM) equipped with a two-moment cloud microphysical scheme to understand the role of biomass burning aerosol (BBA) emissions in Southeast Asia (SEA) in the pre-monsoon period of February–May. Our experiments are designed so that both direct and i...

متن کامل

Measurement-based estimation of the spatial gradient of aerosol radiative forcing

[1] This paper diagnoses the spatial mean and the spatial gradient of the aerosol radiative forcing in comparison with those of well-mixed green-house gases (GHG). Unlike GHG, aerosols have much greater spatial heterogeneity in their radiative forcing. The heterogeneous diabatic heating can modulate the gradient in horizontal pressure field and atmospheric circulations, thus altering the region...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012